Temperature elevation in the human brain and skin with thermoregulation during exposure to RF energy

نویسندگان

  • Sachiko Kodera
  • Jose Gomez-Tames
  • Akimasa Hirata
چکیده

BACKGROUND Two international guidelines/standards for human protection from electromagnetic fields define the specific absorption rate (SAR) averaged over 10 g of tissue as a metric for protection against localized radio frequency field exposure due to portable devices operating below 3-10 GHz. Temperature elevation is suggested to be a dominant effect for exposure at frequencies higher than 100 kHz. No previous studies have evaluated temperature elevation in the human head for local exposure considering thermoregulation. This study aims to discuss the temperature elevation in a human head model considering vasodilation, to discuss the conservativeness of the current limit. METHODS This study computes the temperature elevations in an anatomical human head model exposed to radiation from a dipole antenna and truncated plane waves at 300 MHz-10GHz. The SARs in the human model are first computed using a finite-difference time-domain method. The temperature elevation is calculated by solving the bioheat transfer equation by considering the thermoregulation that simulates the vasodilation. RESULTS The maximum temperature elevation in the brain appeared around its periphery. At exposures with higher intensity, the temperature elevation became larger and reached around 40 °C at the peak SAR of 100 W/kg, and became lower at higher frequencies. The temperature elevation in the brain at the current limit of 10 W/kg is at most 0.93 °C. The effect of vasodilation became notable for tissue temperature elevations higher than 1-2 °C and for an SAR of 10 W/kg. The temperature at the periphery was below the basal brain temperature (37 °C). CONCLUSIONS The temperature elevation under the current guideline for occupational exposure is within the ranges of brain temperature variability for environmental changes in daily life. The effect of vasodilation is significant, especially at higher frequencies where skin temperature elevation is dominant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different reactions of different magnetic temperatures of brain tissue in the face of mobile radiofrequency waves

Background: The widespread use of cell phones has led to an increase in concern about the effect of radiofrequency radiation on the physiology of the human body. This study was conducted to determine the different reaction temperatures of different brain tissue in exposure to mobile radiofrequency waves. Method: This was an experimental study. The cowchr('39')s brain tissue was examined in a c...

متن کامل

Synergistic effects of Radiofrequency Hyperthermia temperature rate with magnetic Graphene oxide nanoparticles drug targeting on CT26 colon cancer cell line

Introduction: Graphene oxide (GO) sheets are carbon-networking nanomaterials offering excellent potential for drug delivery platforms due to hydrophobic interactions and high drug-loading efficiency. Superparamagnetic iron oxide nanoparticles can be used in certain applications such as cell labeling, drug delivery, targeting, magnetic resonance imaging and hyperthermia. Due t...

متن کامل

Modeling thermal responses in human subjects following extended exposure to radiofrequency energy

BACKGROUND This study examines the use of a simple thermoregulatory model for the human body exposed to extended (45 minute) exposures to radiofrequency/microwave (RF/MW) energy at different frequencies (100, 450, 2450 MHz) and under different environmental conditions. The exposure levels were comparable to or above present limits for human exposure to RF energy. METHODS We adapted a compartm...

متن کامل

Exposure to cell phone radiofrequency changes corticotrophin hormone levels and histology of the brain and adrenal glands in male Wistar rat

Objective(s): Nowadays, the electromagnetic field-emitting devices are used routinely in our lives. Controversial reports exist concerning the effects of mobile radiofrequency (RF) on different parts of the body, especially stress hormones. The main goal of the present work was to study the long-term effects of mobile RF900 MHz exposure with special focus on the adrenal gland pathophysiology an...

متن کامل

Thermoregulatory responses to RF energy absorption.

This white paper combines a tutorial on the fundamentals of thermoregulation with a review of the current literature concerned with physiological thermoregulatory responses of humans and laboratory animals in the presence of radio frequency (RF) and microwave fields. The ultimate goal of research involving whole body RF exposure of intact organisms is the prediction of effects of such exposure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2018